

DOELAP External Dosimetry Webinar Dosimeter Fade

June 22, 2017

Rick Cadogan rcadogan@anl.gov

Phone: 630-252-3352

DOELAP On-Site Assessment Requirements Checklist

- TD.15 Luminescent material fading under normal conditions must be documented and accounted for over the period of intended use (dosimeter issue cycle).
- OSL.15 OSL material fading under normal conditions has been documented and accounted for the period of intended use.

Principles of Thermoluminescence or Optically Stimulated Luminescence

- Thermoluminscence (TL) or Optical Stimulated Luminescence (OSL) is the ability of some materials to convert the energy from radiation to a radiation of a different wavelength, normally in the visible light range.
- In some materials, defects in the material exist or impurities are added that trap electrons in the band gap.
- Trapped electrons have more energy than those in the valence band.
- When stimulated by heat or light, the trapped electrons return to the valence band giving off energy in the form of visible light.
- Measurement of the emissions (glow curve) allows for a conversion to dose equivalent.
- Trapped electrons are liberated
 due to ambient heat/light.

Fade Influences

- Integration of the 'Dose' portion of the glow curve
 - Timing Parameters Panasonic
 - Region of Interest settings Harshaw
- Heating intensity
 - Timing Parameters, Voltage, Bias Current Panasonic
 - Ramp Rates contact or hot gas Harshaw
 - Ambient Temperatures (Lab storage vs Car dashboard)
- Sensitive element mass (Heat Capacity)
 - Amount of sensitive material, glue, substrate, moisture
 - Different manufactured lots may have different Heat Capacity

Good Heat Adjustment Techniques Reduce Fade Effects

Good Heat Adjustment Techniques Reduce Fade Effects

Shortly after irradiation, Pre & Main peak height should be ~ equal.

Good Heat Adjustment Techniques Reduce Fade Effects

Integrated Glow Curves - Acceptable Heating

5 minute Fade

LiBO

24 hr Fade

Integrated Glow Curves - Acceptable Heating

5 minute Fade

CaSO

24 hr Fade

Integrated Glow Curves - Improper Heating

5 minute Fade

LiBO

24 hr Fade

Pre: 10

Read: 3116

Post: 1392

Pr/M: 0.0032

Po/M: 0.4467

Pr/S: 0.0022

M/S: 0.6897

Po/S: 0.3081

Verification of Acceptable Heating

UD-802		1 hr Fade					24 hr Fade					1 hr / 24 hr			
		E1	E2	E3	E4		E1	E2	E3	E4		E1	E2	E3	E4
2003805	2	800	791	498	497		769	765	483	484		1.040	1.034	1.031	1.027
2006083	2	821	820	536	545		793	804	512	519		1.035	1.020	1.047	1.050
2013363	2	833	812	557	637		833	820	553	632		1.000	0.990	1.007	1.008
2014076	2	668	653	665	668		655	631	633	659		1.020	1.035	1.051	1.014
2017805	2	589	408	499	533		607	417	470	500		0.970	0.978	1.062	1.066
2021491	2	613	609	510	538		600	569	486	511		1.022	1.070	1.049	1.053
2021909	2	483	506	534	421		474	499	516	412		1.019	1.014	1.035	1.022
2025550	2	512	411	730	741		505	392	701	697		1.014	1.048	1.041	1.063
2028627	2	343	392	606	656		332	398	577	620		1.033	0.985	1.050	1.058
2030273	2	395	325	653	643		405	315	611	587		0.975	1.032	1.069	1.095
											Ave	1.013	1.021	1.044	1.046
										S	tdev	0.024	0.029	0.017	0.027
UD-809		1 hr Fade					24 hr Fade					1 hr / 24 hr (Fade Factors)			
		E1	E2	E3	E4		E1	E2	E3	E4		E1	E2	E3	E4
9003749	9	596	432	377	480		589	406	366	434		1.012	1.064	1.030	1.106
9005450	9	566			674										0.005
			657	548	671		591	686	564	681		0.958	0.958	0.972	0.985
9007499	9	617	608	560	588		614	599	561	559		1.005	1.015	0.998	1.052
9010177	9	617 537	608 632	560 681	588 608			599 610	561 632	559 557		1.005 1.049	1.015 1.036		1.052 1.092
	9	617 537 512	608	560 681 555	588 608 705		614	599 610 643	561 632 546	559		1.005	1.015	0.998	1.052 1.092 1.043
9010177	9	617 537 512 461	608 632	560 681	588 608 705 669		614 512	599 610	561 632	559 557		1.005 1.049	1.015 1.036	0.998 1.078	1.052 1.092
9010177 9010899	9	617 537 512 461 663	608 632 654	560 681 555	588 608 705 669 507		614 512 486	599 610 643	561 632 546 611 450	559 557 676		1.005 1.049 1.053	1.015 1.036 1.017	0.998 1.078 1.016	1.052 1.092 1.043 1.001 0.994
9010177 9010899 9015200 9016281 9022216	9 9 9 9	617 537 512 461	608 632 654 604	560 681 555 633	588 608 705 669 507 372		614 512 486 446	599 610 643 564	561 632 546 611 450 433	559 557 676 668		1.005 1.049 1.053 1.034	1.015 1.036 1.017 1.071 1.006 1.042	0.998 1.078 1.016 1.036	1.052 1.092 1.043 1.001 0.994 0.964
9010177 9010899 9015200 9016281	9 9 9 9	617 537 512 461 663 662 469	608 632 654 604 536	560 681 555 633 454 452 508	588 608 705 669 507 372 541		614 512 486 446 615 616 428	599 610 643 564 533 430 556	561 632 546 611 450 433 473	559 557 676 668 510 386 520		1.005 1.049 1.053 1.034 1.078 1.075 1.096	1.015 1.036 1.017 1.071 1.006 1.042 1.036	0.998 1.078 1.016 1.036 1.009 1.044 1.074	1.052 1.092 1.043 1.001 0.994 0.964 1.040
9010177 9010899 9015200 9016281 9022216	9 9 9 9	617 537 512 461 663 662	608 632 654 604 536 448	560 681 555 633 454 452	588 608 705 669 507 372		614 512 486 446 615 616	599 610 643 564 533 430	561 632 546 611 450 433	559 557 676 668 510 386		1.005 1.049 1.053 1.034 1.078 1.075	1.015 1.036 1.017 1.071 1.006 1.042	0.998 1.078 1.016 1.036 1.009 1.044	1.052 1.092 1.043 1.001 0.994 0.964
9010177 9010899 9015200 9016281 9022216 9023177	9 9 9 9	617 537 512 461 663 662 469	608 632 654 604 536 448 576	560 681 555 633 454 452 508	588 608 705 669 507 372 541		614 512 486 446 615 616 428	599 610 643 564 533 430 556	561 632 546 611 450 433 473	559 557 676 668 510 386 520 646	Ave	1.005 1.049 1.053 1.034 1.078 1.075 1.096	1.015 1.036 1.017 1.071 1.006 1.042 1.036	0.998 1.078 1.016 1.036 1.009 1.044 1.074	1.052 1.092 1.043 1.001 0.994 0.964 1.040

Fade Definitions

- Fade Loss of signal due to ambient heat
- t_s Shortest length of time between dosimeter irradiation and processing of the same dosimeter.
- t_R Length of time between Irradiation and Calibration (16 48 hrs). Reference point for all other data points.
 Fade factor always considered 1.0. mR* = mrem
- t_L Longest length of time between dosimeter irradiation and processing of the same dosimeter.
- t_x Data point at any given location in time.

Fade Determination Methodologies

(Assumes no pre-fade issues)

Method #1

- Irradiate all dosimeters at the same time to a know dose (i.e. 500 mrem)
- Read irradiated dosimeters (5-10) at each predetermined fade point(t_x) with control subtraction.
- Be sure to read irradiated dosimeters at routine calibration fade time (t_R)
- Calculate fade factor for each data point $(\mathbf{t_x} / \mathbf{t_R})$
- Plot points (Fade Factor vs: Fade time) and calculate equation(s)

Method #2

- Irradiated dosimeters (5-10) at each predetermined fade point(\mathbf{t}_{x}) (i.e. 500 mrem)
- Be sure to include irradiated dosimeters at routine calibration fade time (t_R)
- Read all irradiated dosimeters at the same time with control subtraction. Read short term fade badges first.
- Calculate fade factor for each data point (t_x / t_R)
- Plot points (Fade Factor vs Fade time) and calculate equation(s)

Fade Correction

UD-802 Long-term Fade (CaSO) Cs-137 Acute

As an Assessor - 'Finding' or no 'Finding' Items to consider....

- Does the processor account for Fade?
 - If no; what is the Technical Basis for not using Fade Correction
- How is Fade Correction applied?
 - Acute, Daily Average, Mid-Point, Inherent Batch Correction or combination
 - Is Technical Basis Sound
- Is the Fade Correction reasonable for the time of intended use?
- Is the Fade Correction calculated and used past the routine issue periods?
- How long ago was a Fade Study performed?
 - Any recent validity testing?

References

- Panasonic Users Manual; Chapter 8; 12/18/1990
- Determining the Fade Correction for Panasonic Dosimeters; International Dosimetry and Records Symposium; Rick Cummings, PhD, June 2014
- Determination of Fade, EDG-409, Argonne National Lab, May 2008
- Heating Adjustments of the Panasonic UD-710A TLD Reader, EDG-410, Argonne National Lab, September 2009

Questions? & Discussion

